
NAG C Library Function Document

nag_moments_quad_form (g01nac)

1 Purpose

nag_moments_quad_form (g01nac) computes the cumulants and moments of quadratic forms in Normal
variates.

2 Specification

void nag_moments_quad_form (Nag_OrderType order, Nag_SelectMoments mom,
Nag_IncludeMean mean, Integer n, const double a[], Integer pda,
const double emu[], const double sigma[], Integer pdsig, Integer l,
double rkum[], double rmom[], NagError *fail)

3 Description

Let x have an n-dimensional multivariate Normal distribution with mean � and variance-covariance matrix
�. Then for a symmetric matrix A, nag_moments_quad_form (g01nac) computes up to the first 12

moments and cumulants of the quadratic form Q ¼ xTAx. The sth moment (about the origin) is defined
as

EðQsÞ;
where E denotes expectation. The sth moment of Q can also be found as the coefficient of ts=s! in the

expansion of EðeQtÞ. The sth cumulant is defined as the coefficient of ts=s! in the expansion of

logðEðeQtÞÞ.
The function is based on the routine CUM written by Magnus and Pesaran (1993) and based on the theory
given by Magnus (1978), Magnus (1979) and Magnus (1986).

4 References

Magnus J R (1978) The moments of products of quadratic forms in Normal variables Statist. Neerlandica
32 201–210

Magnus J R (1979) The expectation of products of quadratic forms in Normal variables: the practice
Statist. Neerlandica 33 131–136

Magnus J R (1986) The exact moments of a ratio of quadratic forms in Normal variables Ann. ´conom.

Statist. 4 95–109

Magnus J R and Pesaran B (1993) The evaluation of cumulants and moments of quadratic forms in
Normal variables (CUM): Technical description Comput. Statist. 8 39–45

Magnus J R and Pesaran B (1993) The evaluation of moments of quadratic forms and ratios of quadratic
forms in Normal variables: Background, motivation and examples Comput. Statist. 8 47–55

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

g01 – Simple Calculations on Statistical Data g01nac

[NP3645/7] g01nac.1

2: mom – Nag_SelectMoments Input

On entry: indicates if moments are computed in addition to cumulants.

If mom ¼ Nag CumulantsOnly, only cumulants are computed.

If mom ¼ Nag ComputeMoments, moments are computed in addition to cumulants.

Constraint: mom ¼ Nag CumulantsOnly or Nag ComputeMoments.

3: mean – Nag_IncludeMean Input

On entry: indicates if the mean, �, is zero.

If mean ¼ Nag MeanZero, � is zero.

If mean ¼ Nag MeanInclude, the value of � is supplied in emu.

Constraint: mean ¼ Nag MeanZero or Nag MeanInclude.

4: n – Integer Input

On entry: the dimension of the quadratic form, n.

Constraint: n > 1.

5: a½dim� – const double Input

Note: the dimension, dim, of the array a must be at least pda� n.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the n by n symmetric matrix A. Only the lower triangle is referenced.

6: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � n.

7: emu½dim� – const double Input

Note: the dimension, dim, of the array emu must be at least n when mean ¼ Nag MeanInclude
and at least 1 otherwise.

On entry: if mean ¼ Nag MeanInclude, emu must contain the n elements of the vector �. If
mean ¼ Nag MeanZero, emu is not referenced.

8: sigma½dim� – const double Input

Note: the dimension, dim, of the array sigma must be at least pdsig� n.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in sigma½ðj� 1Þ � pdsigþ i� 1�
and i f order ¼ Nag RowMajor, t h e ði; jÞt h e l emen t o f t h e ma t r i x i s s t o r ed i n

sigma½ði� 1Þ � pdsigþ j� 1�.
On entry: the n by n variance-covariance matrix �. Only the lower triangle is referenced.

Constraint: the matrix � must be positive-definite.

9: pdsig – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array sigma.

Constraint: pdsig � n.

g01nac NAG C Library Manual

g01nac.2 [NP3645/7]

10: l – Integer Input

On entry: the required number of cumulants, and moments if specified.

Constraint: 1 � l � 12.

11: rkum½l� – double Output

On exit: the l cumulants of the quadratic form.

12: rmom½dim� – double Output

Note: the dimension, dim, of the array rmom must be at least l when
mom ¼ Nag ComputeMoments and at least 1 otherwise.

On exit: if mom ¼ Nag ComputeMoments, the l moments of the quadratic form.

13: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n > 1.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

On entry, pdsig ¼ hvaluei.
Constraint: pdsig > 0.

On entry, l ¼ hvaluei.
Constraint: l � 12.

On entry, l ¼ hvaluei.
Constraint: l � 1.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � n.

On entry, pdsig ¼ hvaluei, n ¼ hvaluei.
Constraint: pdsig � n.

NE_POS_DEF

On entry, sigma is not positive-definite.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

g01 – Simple Calculations on Statistical Data g01nac

[NP3645/7] g01nac.3

7 Accuracy

In a range of tests the accuracy was found to be a modest multiple of machine precision. See Magnus and
Pesaran (1993).

8 Further Comments

None.

9 Example

The example is given by Magnus and Pesaran (1993) and considers the simple autoregression

yt ¼ �yt�1 þ ut; t ¼ 1; 2; . . .n;

where {ut} is a sequence of independent Normal variables with mean zero and variance one, and y0 is
known. The moments of the quadratic form

Q ¼
Xn

t¼2

ytyt�1

are computed using nag_moments_quad_form (g01nac). The matrix A is given by:

Aðiþ 1; iÞ ¼ 1
2
; i ¼ 1; 2; . . .n� 1;

Aði; jÞ ¼ 0; otherwise:

The value of � can be computed using the relationships

varðytÞ ¼ �2 varðyt�1Þ þ 1

and

covðytytþkÞ ¼ � covðytytþk�1Þ

for k � 0 and varðy1Þ ¼ 1.

The values of �, y0, n, and the number of moments required are read in and the moments and cumulants
printed.

9.1 Program Text

/* nag_moments_quad_form (g01nac) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{

/* Scalars */
double beta, con;
Integer exit_status, i, j, l, n, pda, pdsigma;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *a=0, *emu=0, *rkum=0, *rmom=0, *sigma=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define SIGMA(I,J) sigma[(J-1)*pdsigma + I - 1]

g01nac NAG C Library Manual

g01nac.4 [NP3645/7]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define SIGMA(I,J) sigma[(I-1)*pdsigma + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
exit_status = 0;
Vprintf("g01nac Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

Vscanf("%lf%lf%*[^\n] ", &beta, &con);
Vscanf("%ld%ld%*[^\n] ", &n, &l);

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||

!(emu = NAG_ALLOC(n, double)) ||
!(rkum = NAG_ALLOC(l, double)) ||
!(rmom = NAG_ALLOC(l, double)) ||
!(sigma = NAG_ALLOC(n * n, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

pda = n;
pdsigma = n;

if (l <= 12)
{

/* Compute A, EMU, and SIGMA for simple autoregression */
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

A(j, i) = 0.0;
}

for (i = 1; i <= n - 1; ++i)
A(i + 1, i) = 0.5;

emu[0] = con * beta;
for (i = 1; i <= n - 1; ++i)

emu[i] = beta * emu[i - 1];
SIGMA(1, 1) = 1.0;
for (i = 2; i <= n; ++i)

SIGMA(i, i) = beta * beta * SIGMA(i - 1, i - 1) + 1.0;
for (i = 1; i <= n; ++i)

{
for (j = i + 1; j <= n; ++j)

SIGMA(j, i) = beta * SIGMA(j - 1, i);
}

g01nac(order, Nag_ComputeMoments, Nag_MeanInclude,
n, a, n, emu, sigma, n, l, rkum, rmom, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from g01nac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf("\n");
Vprintf(" n = %3ld beta = %6.3f con = %6.3f\n", n, beta, con);
Vprintf("\n");

Vprintf(" Cumulants Moments\n");
Vprintf("\n");
for (i = 1; i <= l; ++i)

Vprintf("%3ld%12.4e %12.4e\n", i, rkum[i - 1], rmom[i - 1]);

g01 – Simple Calculations on Statistical Data g01nac

[NP3645/7] g01nac.5

}

END:
if (a) NAG_FREE(a);
if (emu) NAG_FREE(emu);
if (rkum) NAG_FREE(rkum);
if (rmom) NAG_FREE(rmom);
if (sigma) NAG_FREE(sigma);

return exit_status;
}

9.2 Program Data

g01nac Example Program Data
0.8 1.0 : BETA, CON
10 4 : N, L

9.3 Program Results

g01nac Example Program Results

n = 10 beta = 0.800 con = 1.000

Cumulants Moments

1 1.7517e+01 1.7517e+01
2 3.5010e+02 6.5695e+02
3 1.6091e+04 3.9865e+04
4 1.1700e+06 3.4039e+06

g01nac NAG C Library Manual

g01nac.6 (last) [NP3645/7]

	g01nac
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	mom
	mean
	n
	a
	pda
	emu
	sigma
	pdsig
	l
	rkum
	rmom
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_POS_DEF
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

