201 — Simple Calculations on Statistical Data g01nac

NAG C Library Function Document

nag _moments _quad_form (g01nac)

1 Purpose

nag_moments _quad form (gOlnac) computes the cumulants and moments of quadratic forms in Normal
variates.

2 Specification

void nag_moments_quad_form (Nag_OrderType order, Nag_SelectMoments mom,
Nag_IncludeMean mean, Integer n, const double a[], Integer pda,
const double emu[], const double sigma[], Integer pdsig, Integer I,
double rkum[], double rmom[], NagError *fail)

3 Description

Let z have an n-dimensional multivariate Normal distribution with mean p and variance-covariance matrix
3. Then for a symmetric matrix A, nag moments_quad form (g0lnac) computes up to the first 12

moments and cumulants of the quadratic form @ = 2z’ Az. The sth moment (about the origin) is defined
as

E(Q),

where E denotes expectation. The sth moment of) can also be found as the coefficient of ¢*/s! in the
expansion of E(e“!). The sth cumulant is defined as the coefficient of ¢°/s! in the expansion of

log(E(e™)).

The function is based on the routine CUM written by Magnus and Pesaran (1993) and based on the theory
given by Magnus (1978), Magnus (1979) and Magnus (1986).

4 References

Magnus J R (1978) The moments of products of quadratic forms in Normal variables Statist. Neerlandica
32 201-210

Magnus J R (1979) The expectation of products of quadratic forms in Normal variables: the practice
Statist. Neerlandica 33 131-136

Magnus J R (1986) The exact moments of a ratio of quadratic forms in Normal variables Ann. conom.
Statist. 4 95-109

Magnus J R and Pesaran B (1993) The evaluation of cumulants and moments of quadratic forms in
Normal variables (CUM): Technical description Comput. Statist. 8 39-45

Magnus J R and Pesaran B (1993) The evaluation of moments of quadratic forms and ratios of quadratic
forms in Normal variables: Background, motivation and examples Comput. Statist. 8 47-55

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] g0lnac.1

g01nac NAG C Library Manual

2: mom — Nag_SelectMoments Input
On entry: indicates if moments are computed in addition to cumulants.
If mom = Nag_CumulantsOnly, only cumulants are computed.
If mom = Nag_ComputeMoments, moments are computed in addition to cumulants.

Constraint: mom = Nag_CumulantsOnly or Nag_ComputeMoments.

3: mean — Nag_IncludeMean Input
On entry: indicates if the mean, u, is zero.
If mean = Nag MeanZero, y is zero.
If mean = Nag_MeanlInclude, the value of u is supplied in emu.

Constraint: mean = Nag_MeanZero or Nag_MeanlInclude.

4: n — Integer Input
On entry: the dimension of the quadratic form, n.

Constraint: n > 1.

5: a[dim] — const double Input
Note: the dimension, dim, of the array a must be at least pda x n.

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + ¢ — 1] and
if order = Nag_RowMajor, the (i, 7)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].

On entry: the n by n symmetric matrix A. Only the lower triangle is referenced.

6: pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > n.

7: emu|dim| — const double Input

Note: the dimension, dim, of the array emu must be at least n when mean = Nag_MeanlInclude
and at least 1 otherwise.

On entry: if mean = Nag_MeanInclude, emu must contain the n elements of the vector p. If
mean = Nag_MeanZero, emu is not referenced.

8: sigma|dim| — const double Input
Note: the dimension, dim, of the array sigma must be at least pdsig x n.

If order = Nag_ColMajor, the (¢, j)th element of the matrix is stored in sigma[(j — 1) x pdsig + i — 1]
and if order = Nag_ RowMajor, the (i,j)th element of the matrix is stored in
sigma[(i — 1) x pdsig + j — 1].

On entry: the n by n variance-covariance matrix . Only the lower triangle is referenced.

Constraint. the matrix X must be positive-definite.

9: pdsig — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array sigma.

Constraint: pdsig > n.

g01nac.2 [NP3645/7]

201 — Simple Calculations on Statistical Data

10: 1 — Integer

On entry: the required number of cumulants, and moments if specified.

Constraint: 1 <1< 12.

11: rkum(l] — double

On exit: the 1 cumulants of the quadratic form.

12: rmom|dim] — double

Note: the dimension, dim, of the array rmom must

mom = Nag_ComputeMoments and at least 1 otherwise.

g01nac

Input

Output

Output

at least 1 when

On exit: if mom = Nag_ComputeMoments, the 1 moments of the quadratic form.

13: fail — NagError *

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 1.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdsig = (value).
Constraint: pdsig > 0.

On entry, 1 = (value).
Constraint: 1 < 12.

On entry, 1 = (value).
Constraint: 1> 1.

NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > n.

On entry, pdsig = (value), n = (value).
Constraint: pdsig > n.

NE_POS_DEF

On entry, sigma is not positive-definite.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

Input/Output

An internal error has occurred in this function. Check the function call and any array sizes. If the

call is correct then please consult NAG for assistance.

[NP3645/7]

g0lnac.3

gl0lnac NAG C Library Manual

7 Accuracy

In a range of tests the accuracy was found to be a modest multiple of machine precision. See Magnus and
Pesaran (1993).

8 Further Comments

None.

9 Example
The example is given by Magnus and Pesaran (1993) and considers the simple autoregression
yt:/@yt—l+ut’ t:1,27...TL,

where {u,;} is a sequence of independent Normal variables with mean zero and variance one, and y, is
known. The moments of the quadratic form

Q= Z YY1
=2

are computed using nag_moments_quad_form (g0lnac). The matrix A is given by:

A(i+1,9) = 3, i=1,2,...n—1;
A(i, 5) = 0, otherwise.
The value of X can be computed using the relationships

var(y,) = 3 var(y,_;) + 1

and

oV (YYsk) = BeoV(Ys¥sin1)
for £ > 0 and var(y,) = 1.

The values of 3, y,, n, and the number of moments required are read in and the moments and cumulants
printed.

9.1 Program Text

/* nag_moments_quad_form (gOlnac) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg0l.h>

int main(void)
{
/* Scalars */
double beta, con;
Integer exit_status, i, j, 1, n, pda, pdsigma;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *a=0, *emu=0, *rkum=0, *rmom=0, *sigma=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]
#define SIGMA(I,J) sigmal(J-1)*pdsigma + I - 1]

g01lnac.4 [NP3645/7]

order = Nag_ColMajor;

#else
#define A(I,J)
#define SIGMA(I,J)

order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
exit_status = 0;

Vprintf ("gOlnac Example Program Results\n");

g01 — Simple Calculations on Statistical Data

al(I-1)*pda + J - 1]
sigmal[(I-1)*pdsigma + J - 1]

/* Skip heading in data file */

Vscanf ("s*[*\n] ");

Vscanf ("s1fs1fs+x["\n] ", &beta,

Vscanf ("$1d%1d%*["\n] ", &n, &l);

/* Allocate memory */

if (!(a = NAG_ALLOC(n * n, double))
|

double))
double))
double))

! (emu = NAG_ALLOC(n,
! (rkum = NAG_ALLOC(1,
! (rmom = NAG_ALLOC(1,
! (sigma = NAG_ALLOC(n * n, doub
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
pda = n;

pdsigma = n;

if (1 <= 12)
{

&con) ;

|
[
[
le)))

g01nac

/* Compute A, EMU, and SIGMA for simple autoregression */
for (1 = 1; 1 <= n; ++1)

{
for (j =1

3

for (1 =1; 1 <= n - 1; ++1)

A(i + 1, i) = 0.5;

emu[0O] = con * beta;
for (1 =1; 1 <= n - 1; ++1)
emu[i] = beta * emul[i - 1];
SIGMA(1l, 1) = 1.0;
for (i = 2; 1 <= n; ++1)
SIGMA(i, 1) = beta * beta * SIGMA(i - + 1.0;
for (1 = 1; 1 <= n; ++1)
{
for (j =1+ 1; j <= n; ++3j)
SIGMA(j, i) = beta * SIGMA(j - 1, i);
¥
gO0lnac(order, Nag_ComputeMoments, Nag_MeanInclude,
n, a, n, emu, sigma, n, 1, rkum, &fail);
if (fail.code != NE_NOERROR)
{

Vprintf ("Error from gOlnac.\n%s\n",
1;

exit_status =
goto END;
¥

Vprintf ("\n

n) ;
Vprintf (" n = %31d beta = %6.3f con =
n) ;

Vprintf ("\n

Moments\n") ;

%12.4e\n", i,

Vprintf (" Cumulants
Vprintf ("\n") ;
for (i = 1; i <= 1; ++1)
Vprintf ("$31d%12.4e
[NP3645/7]

fail.message) ;

beta, con);

rkum[i - 1], rmom[i - 1]);

g0lnac.5

gl0lnac NAG C Library Manual

}
END:
if (a) NAG_FREE(a);
if (emu) NAG_FREE (emu) ;

if (rmom) NAG_FREE (rmom) ;

(
(
if (rkum) NAG_FREE (rkum) ;
(
if (sigma) NAG_FREE (sigma) ;

return exit_status;

9.2 Program Data

gO0lnac Example Program Data
0.8 1.0 : BETA, CON
10 4 : N, L

9.3 Program Results

gO0lnac Example Program Results

n = 10 beta = 0.800 con = 1.000
Cumulants Moments
1 1.7517e+01 1.7517e+01
2 3.5010e+02 6.56095e+02
3 1.6091e+04 3.9865e+04
4 1.1700e+06 3.4039e+06

g01nac.6 (last) [NP3645/7]

	g01nac
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	mom
	mean
	n
	a
	pda
	emu
	sigma
	pdsig
	l
	rkum
	rmom
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_POS_DEF
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

