
NAG C Library Function Document

nag_moments_quad_form (g01nac)

1 Purpose

nag_moments_quad_form (g01nac) computes the cumulants and moments of quadratic forms in Normal
variates.

2 Specification

void nag_moments_quad_form (Nag_OrderType order, Nag_SelectMoments mom,
Nag_IncludeMean mean, Integer n, const double a[], Integer pda,
const double emu[], const double sigma[], Integer pdsig, Integer l,
double rkum[], double rmom[], NagError *fail)

3 Description

Let x have an n-dimensional multivariate Normal distribution with mean � and variance-covariance matrix
�. Then for a symmetric matrix A, nag_moments_quad_form (g01nac) computes up to the first 12

moments and cumulants of the quadratic form Q ¼ xTAx. The sth moment (about the origin) is defined
as

EðQsÞ;
where E denotes expectation. The sth moment of Q can also be found as the coefficient of ts=s! in the

expansion of EðeQtÞ. The sth cumulant is defined as the coefficient of ts=s! in the expansion of

logðEðeQtÞÞ.
The function is based on the routine CUM written by Magnus and Pesaran (1993) and based on the theory
given by Magnus (1978), Magnus (1979) and Magnus (1986).
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5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

g01 – Simple Calculations on Statistical Data g01nac

[NP3645/7] g01nac.1



2: mom – Nag_SelectMoments Input

On entry: indicates if moments are computed in addition to cumulants.

If mom ¼ Nag CumulantsOnly, only cumulants are computed.

If mom ¼ Nag ComputeMoments, moments are computed in addition to cumulants.

Constraint: mom ¼ Nag CumulantsOnly or Nag ComputeMoments.

3: mean – Nag_IncludeMean Input

On entry: indicates if the mean, �, is zero.

If mean ¼ Nag MeanZero, � is zero.

If mean ¼ Nag MeanInclude, the value of � is supplied in emu.

Constraint: mean ¼ Nag MeanZero or Nag MeanInclude.

4: n – Integer Input

On entry: the dimension of the quadratic form, n.

Constraint: n > 1.

5: a½dim� – const double Input

Note: the dimension, dim, of the array a must be at least pda� n.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the n by n symmetric matrix A. Only the lower triangle is referenced.

6: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � n.

7: emu½dim� – const double Input

Note: the dimension, dim, of the array emu must be at least n when mean ¼ Nag MeanInclude
and at least 1 otherwise.

On entry: if mean ¼ Nag MeanInclude, emu must contain the n elements of the vector �. If
mean ¼ Nag MeanZero, emu is not referenced.

8: sigma½dim� – const double Input

Note: the dimension, dim, of the array sigma must be at least pdsig� n.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in sigma½ðj� 1Þ � pdsigþ i� 1�
and i f order ¼ Nag RowMajor, t h e ði; jÞt h e l emen t o f t h e ma t r i x i s s t o r ed i n

sigma½ði� 1Þ � pdsigþ j� 1�.
On entry: the n by n variance-covariance matrix �. Only the lower triangle is referenced.

Constraint: the matrix � must be positive-definite.

9: pdsig – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array sigma.

Constraint: pdsig � n.
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10: l – Integer Input

On entry: the required number of cumulants, and moments if specified.

Constraint: 1 � l � 12.

11: rkum½l� – double Output

On exit: the l cumulants of the quadratic form.

12: rmom½dim� – double Output

Note: the dimension, dim, of the array rmom must be at least l when
mom ¼ Nag ComputeMoments and at least 1 otherwise.

On exit: if mom ¼ Nag ComputeMoments, the l moments of the quadratic form.

13: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n > 1.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

On entry, pdsig ¼ hvaluei.
Constraint: pdsig > 0.

On entry, l ¼ hvaluei.
Constraint: l � 12.

On entry, l ¼ hvaluei.
Constraint: l � 1.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � n.

On entry, pdsig ¼ hvaluei, n ¼ hvaluei.
Constraint: pdsig � n.

NE_POS_DEF

On entry, sigma is not positive-definite.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.
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7 Accuracy

In a range of tests the accuracy was found to be a modest multiple of machine precision. See Magnus and
Pesaran (1993).

8 Further Comments

None.

9 Example

The example is given by Magnus and Pesaran (1993) and considers the simple autoregression

yt ¼ �yt�1 þ ut; t ¼ 1; 2; . . .n;

where {ut} is a sequence of independent Normal variables with mean zero and variance one, and y0 is
known. The moments of the quadratic form

Q ¼
Xn

t¼2

ytyt�1

are computed using nag_moments_quad_form (g01nac). The matrix A is given by:

Aðiþ 1; iÞ ¼ 1
2
; i ¼ 1; 2; . . .n� 1;

Aði; jÞ ¼ 0; otherwise:

The value of � can be computed using the relationships

varðytÞ ¼ �2 varðyt�1Þ þ 1

and

covðytytþkÞ ¼ � covðytytþk�1Þ

for k � 0 and varðy1Þ ¼ 1.

The values of �, y0, n, and the number of moments required are read in and the moments and cumulants
printed.

9.1 Program Text

/* nag_moments_quad_form (g01nac) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{

/* Scalars */
double beta, con;
Integer exit_status, i, j, l, n, pda, pdsigma;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *a=0, *emu=0, *rkum=0, *rmom=0, *sigma=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define SIGMA(I,J) sigma[(J-1)*pdsigma + I - 1]
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order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define SIGMA(I,J) sigma[(I-1)*pdsigma + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
exit_status = 0;
Vprintf("g01nac Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

Vscanf("%lf%lf%*[^\n] ", &beta, &con);
Vscanf("%ld%ld%*[^\n] ", &n, &l);

/* Allocate memory */
if ( !(a = NAG_ALLOC(n * n, double)) ||

!(emu = NAG_ALLOC(n, double)) ||
!(rkum = NAG_ALLOC(l, double)) ||
!(rmom = NAG_ALLOC(l, double)) ||
!(sigma = NAG_ALLOC(n * n, double)) )

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

pda = n;
pdsigma = n;

if (l <= 12)
{

/* Compute A, EMU, and SIGMA for simple autoregression */
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

A(j, i) = 0.0;
}

for (i = 1; i <= n - 1; ++i)
A(i + 1, i) = 0.5;

emu[0] = con * beta;
for (i = 1; i <= n - 1; ++i)

emu[i] = beta * emu[i - 1];
SIGMA(1, 1) = 1.0;
for (i = 2; i <= n; ++i)

SIGMA(i, i) = beta * beta * SIGMA(i - 1, i - 1) + 1.0;
for (i = 1; i <= n; ++i)

{
for (j = i + 1; j <= n; ++j)

SIGMA(j, i) = beta * SIGMA(j - 1, i);
}

g01nac(order, Nag_ComputeMoments, Nag_MeanInclude,
n, a, n, emu, sigma, n, l, rkum, rmom, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from g01nac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf("\n");
Vprintf(" n = %3ld beta = %6.3f con = %6.3f\n", n, beta, con);
Vprintf("\n");

Vprintf(" Cumulants Moments\n");
Vprintf("\n");
for (i = 1; i <= l; ++i)

Vprintf("%3ld%12.4e %12.4e\n", i, rkum[i - 1], rmom[i - 1]);
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}

END:
if (a) NAG_FREE(a);
if (emu) NAG_FREE(emu);
if (rkum) NAG_FREE(rkum);
if (rmom) NAG_FREE(rmom);
if (sigma) NAG_FREE(sigma);

return exit_status;
}

9.2 Program Data

g01nac Example Program Data
0.8 1.0 : BETA, CON
10 4 : N, L

9.3 Program Results

g01nac Example Program Results

n = 10 beta = 0.800 con = 1.000

Cumulants Moments

1 1.7517e+01 1.7517e+01
2 3.5010e+02 6.5695e+02
3 1.6091e+04 3.9865e+04
4 1.1700e+06 3.4039e+06
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